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Synopsis

A systematic theory of treating the complex ground-state correlations for 2particle-2hole 
excitations is proposed. It is shown that these new ground-state correlations describe the collec
tive predisposition of the spherical ground state in closed-shell nuclei to produce deformed excited 
states. The resulting deformation of the excited states incorporates the deformation of the core. 
These features are made evident by a self-consistent method. Formal properties of the solutions 
and their influence on various electromagnetic transitions are discussed.
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1. Introduction

For a long time it has been difficult to understand the position of low 
lying even parity states in closed-shell nuclei. Several years ago a clue to 
the solution was suggested by Bohr and Mottelson in connection with the 

“mysterious zero plus states”. The suggestion (pointing out the special im
portance of seeing the low lying states from the stand-point of deformed 
excited states (1)) has been confirmed by recent experiments <2> which show 
that many of the low lying excited states in O16 and Ca40 can be fitted into 
rotational bands. Along this line, several investigations (3> 4) have been made, 
in particular in the interesting work af G. E. Brown*5- 6), how to interpret 
the rotational band structure and in connection with it the low excitation 
energy of the even parity states.

As a first step, Brown considers in his model unperturbed excited states 
with a definite number of particles and holes. These states may be ob
tained^) from a Hartree-Fock approximation*.  They turn out to be deformed 
in a body-fixed system and thus account for the occurrence of rotational 
bands. The deformation then is regarded as the main reason for the low 
excitation energy of the first excited 0+state in O16. However, excitations 
consisting of pure 2particle-2hole (2p-2h) or 4particle-4hole (4p-4h) con
figurations would not be able to account for the observed strong electro
magnetic transitions between the rotational band and the ground state. 
Therefore, Brown (5>6> introduces, in a second step, a considerable mixing 
between a few specific unperturbed excited states and the spherical shell
model ground state. Of course, this procedure will in general destroy the 
rotational band structure obtained in the first step. The problem then is to 
find a reasonable mixing of unperturbed states, which explains both the 
electromagnetic transitions and at the same time preserves the rotational 
band structure. Because of this restriction, and in spite of the striking success 
of the model, it appears to us that the account for ground-state correlations 
is somewhat artificial and insufficient, and a refined treatment is desirable.

* Actually, in Brown’s model the core deformation is taken into account phenomenologically 
as an important correction.
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Such a refinement should be based on ground-state correlations which 
are known to be particularly important for collective phenomena in nuclei. 
We may expect that the correct ground state has a collective predisposition 
for collective excitations. In other words, the collective correlation which is 
responsible for collective excited states will also be present in the ground 
state as a ground-state correlation. In the phenomenological theory, the 
collective predisposition clearly manifests itself in the zero-point motion. 
Correspondingly, the success of the new Tamm-Dancoff method (NTD) or 
random-phase approximation (RPA) in describing collective phenomena is 
essentially due to the symmetrical treatment of correlations for both the 
excited states and the ground state. In this way the collective predisposition 
is properly incorporated in the theory. This is certainly an improvement 
over the Tamm-Dancoff method (TD) which asymmetrically attributes all 
the collectiveness exclusively to the excited states. For instance, if we just 
consider configurations with a definite number of particles and holes and 
treat them in the TD(7) or (in order to obtain a more clear-cut notion of 
“intrinsic deformation’’) in the Hartree-Fock approximation (3), the resulting 
collectiveness which produces the deformation is entirely ascribed to the 
excited states. But we have seen above that the collectiveness should be in
corporated in the ground stale as a collective predisposition to produce deformed 
excited states. This collective point of view has been especially stressed by 
Bohr and Mottelson*,  and is the essential stand-point of the present theory. 
Once the corresponding ground-state correlations have been taken into 
account properly, the excited states will become much more “collective’’, 
and both the deformations and the level positions of the excited states will 
be quite different from those obtained by the TD or Hartree-Fock method. 
The importance of such changes for explaining the actual deformations and 
actual level positions has long been recognized (8) ; the effect is often referred 
to as the “deformation of the core by the excited particle’’. This cooperation 
effect of the core is usually discussed in the single-particle picture, where it 
is reflected in the change of the energy difference between the highest occu
pied and the lowest unoccupied Nilsson level as a function of the deforma
tion <5> 6). Quantitatively this effect can be seen in the Volkov(9) type calcula
tions. In O16, for example, the energy necessary to excite a particle pair 
has a minimum for large prolate deformations. From our collective point 
of view, this precisely corresponds to the collective predisposition of the 
spherical ground state to produce deformed excited states.

* See, for instance, the discussion in Congrès International de Physique Nucléaire, Vol. I 
(Paris, 1964) 129.
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The main purpose of this paper is to propose a theory which takes into 
account such a collective predisposition in the spherical ground state and 
to treat the cooperation effect of the core for deformations in the excited 
states in a self-consistent way. Of course, one might try to solve the problem 
by diagonalizing the Hamiltonian in a space which includes enough con
figurations to describe core deformation effects. However, the straight
forward approach has two essential defects: (a) the rank of the matrix to 
be diagonalized is too large to get solutions without serious approximations; 
(b) even if we have the exact solution we do not gain any physical insight 
into the nature of excitation. In order to reach a better understanding we 
are forced to extract the basic physical elements from our problem. To 
this end it is useful to invoke the well-known notions of the field-producing 
force and the residual interaction as a guide. The field-producing force 
generates a (deformed) self-consistent field and is well accounted for in a 
Hartree-Fock approximation. By definition, the residual interaction cannot 
be incorporated in a self-consistent field. It is responsible for the pairing 
correlations in the superconducting state and for two-particle (or two-hole) 
scattering correlations in the normal (non-superconducting) state. Usually 
the residual interaction is considered to be unimportant for closed-shell nuclei 
because of the large energy spacing between occupied and unoccupied levels. 
However, we have discussed above that for large prolate deformations (due 
to the field-producing force) the occupied and unoccupied levels come quite 
close to each other. This means that even if the residual interaction is small, 
the interplay between the residual interaction and the field-producing force 
will be of decisive importance. (This is also reflected in Brown’s model where 
the residual interaction gives rise to mixing effects). We may reformulate 
the statement in another way: If, for simplicity, we adopt the “pairing plus 
quadrupole force model’’, then the difference in parity between major shells
prevents the exciting particles from an occupied shell
to the nearest unoccupied shell even if the force is strong. In fact, particles 
can only be excited by the pairing force even if its strength is weak. Once 
particles are excited, however, the quadrupole force will act strongly among 
the excited configurations and efficiently lead to deformations.

Both this picture and the aim of investigating the important interplay 
between field-producing forces and the residual interaction suggest the fol
lowing two-step procedure: In a first step we diagonalize the residual inter
action including ground-state correlations, and in a second step we diagonal
ize the field-producing forces. This gives rise to a new type of ground-state 
correlations which will be shown to exhibit the collective predisposition of 
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the spherical ground state for deformed excited states. The outline of this 
two-step method is presented in section 2 and the details of both steps 
in sections 3 and 4, respectively. In section 5, we extract the basic element, 
which produces deformations in the excited states, from the general solu
tion of sect. 4. We show, in a succession of generalizations of the costumary 
Hartree-Fock approximation(which leads to deformed excited states), 
how we can get a self-consistent method which contains the core deforma
tion effect explicity and is an approximation for the method given in section 4. 
In section 6, the theory is applied to electromagnetic transitions in which the 
interplay between the field-producing force and the residual interaction 
plays a decisive role. In section 7, finally, we indicate the application of 
our theory to other problems and summarize our results.

2. Outline of the Theory

It is the purpose of the present section to give a first understanding of and 
additional motivation for our theory. For clarity, we will not use here a 
decomposition of the interaction into a field-producing force and a residual 
interaction, as discussed in the introduction, but rather use a closely related 
subdivision which characterizes various parts of the Hamiltonian by Feyn
man diagrams. The original point of view will be taken up in section 5.

2.1. Notation and Hamiltonian

Let us consider a closed-shell nucleus and assume its ground state to be 
spherical and normal (i.e., non-superconducting). Adopting the j-j coupling 
shell model for the zero-order states, we can define the particle- and hole 
creation and annihilation operators as

4 = C1 - 0a)('a f 0a(a = |

~ 0 ~ 0a)fa + Øa(a = aa + Øa I

where a denotes the complete set of quantum numbers a = 
and a = denotes the same set except for the projection quantum
numbers.
Furthermore,

11 for levels occupied in the free ground state
10 for levels unoccupied in the free ground state 

(2.2)
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where the free (unperturbed) ground state |0O > is defined by ua|ø0 > = ha| 
0O> = 0. For a basis of stationary states it is possible to build the entire 
treatment on real quantities if the phase convention is suitably chosen. 
In the following, we always assume this to be the case. The Hamiltonian can 
be written as

H = Ho + Hint
= 2(40) = 2£a:cJca:

a a

= baba)
(X

^int — 2 l,ocßyö •( a c ß ('ôcy •
aßyö

where the symbol : : denotes the normal product with respect to particles 
and holes, and z is the chemical potential. The potential matrix element 
has the symmetry properties

l’aßyö Vßayö l><xßöy ^yötxß- (2-4)

2.2 The Matrix Elements of the Interaction

In order to discuss the various parts of the interaction //int we divide 
the Hamiltonian (2.3) in the following way:

where
.H — Ho + Hpp + Hhh + Hph + Hv + HY, (2.5)

pp 2 uocßyö(t<x (lß aôay 
aßyö

H hh ~ 2 l)ocßyäboc bß böby 
ocßyö

^ph — 4 2 V<xßyö(l<x bö aybß
xßyö

11V = 2 ^ßyö(ßiaßböby + WßWy) 
xßyö

11Y = 2 2 .
aßyö

+ axbÖbfbß + böbabßny\

(2-6)

Each matrix element is represented by one of the diagrams in fig. 1. The 
first three parts, Hpp, Hhh and Hhp, conserve the number of particles and 
holes and therefore are the onlv ones considered in the Tamm-Dancoff
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Fig. 1. Graphic representation of the matrix elements of the interaction. Lines with arrows 
pointing upwards indicate particles, lines with arrows pointing downwards indicate holes. Each 

diagram includes both the “direct” term and the “exchange” term.

calculation or the Hartree-Fock approximation for a fixed number of 
particles and holes. The part, Hv, introduces ground-state correlations 
and is discussed in the following subsection. Finally, the part HY will be 
neglected in our treatment. This is equivalent to the assumption that only 
the excitations with an even number of particles and even number of holes are 
important for a description of low lying even parity states in closed-shell nuclei. 
The assumption may be justified by the following arguments, (a) Among 
the 2 ha> excitations the 2p-2h configurations offer by far more coupling 
possibilities than the lp-lh configurations. Since a strong collectiveness is 
necessary to produce the deformed excited states, the space of all 2p-2h 
configurations will be of main importance, (b) Calculations (7> 10) for O16, 
using the Tamm-Dancolf approximation for lp-lh and 2p-2h configurations, 
have failed to explain the electromagnetic transitions between the lowest 
excited states of even parity and the ground state. The calculated transition 
probabilities are by orders of magnitude too small. This means that the 
eflect of lp-lh configurations would be of less importance compared with 
the eflect of ground-state correlations for the low lying even parity states 
in O16.
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2.3 A Two-Step Method

As has been indicated in the introduction, it is our aim to take the ground
state correlations properly into account and to investigate the important 
interplay between the field-producing force and the residual interaction. 
This has to be done in two distinct steps. G. E. Brown, in his model (5’6), 
first treats the effects of the field-producing force on the excited states and 
afterwards incorporates, to some extent, effects of the residual interaction in 
the mixing of the deformed states. Such a procedure deals with the effects 
in the order of their importance; however, it encounters two intrinsic dif
ficulties. (a) The unperturbed states obtained in the first step by a Hartree- 
Fock method will belong to different deformations. Thus (unless one uses 
the SU3 model instead of the Hartree-Fock procedure), the unperturbed 
(deformed) states will not form an orthogonal set which, however, is re
quired in order to treat the collective ground-state correlations properly, 
(b) Even if the problem of orthogonality did not arise, the incorporation 
of the residual interaction would destroy the rotational band structure 
obtained previously. To avoid such difficulties, we start from the excitation 
mechanism and treat the effects of the residual interaction in the first step. 
For a normal ground state in closed-shell nuclei, these effects will lead to 
2-particle (or 2-hole) scattering correlations described by the following 
linearized relations:

[//, rza ] 2(.^b<xßyöay aô + ^aßyöböby) (2.7 a)
yô

[H,babß] = 2(Maßyöbybö + M'otßyöaöay)> (2-7b)
yô

where the coefficients M and M' depend only on the part Ho + Hpp + Hhh + Hv 
of the Hamiltonian (2.5). The equation of motion corresponding to the 
approximation (2.7) is solved by introducing certain eigenmodes (or elemen
tary excitations) which consist of a correlated particle pair, A+, or a corre
lated hole pair B+. The correlated pairs (virtual Cooper pairs if J = 0) are 
represented schematically in fig. 2 together with the corresponding ground
state correlations. It is important to note that in constructing the pair scat
tering modes we have taken into account the interaction Hv at a stage where 
it is still easy to handle without severely reducing the dimension of the 
space in which the interaction is diagonalized as it is done in Brown’s model.
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Fig. 2. Schematic representation of pair scattering modes for a particle pair A+ and a hole 
pair B+. To lhe right: the corresponding ground-state correlations for the ground state |0'o >. 
The states A+ B+ |ø'o > will, in the following, often be called “2p-2h” states where the quota
tion marks indicate that also 4p-4h, 6p-6h, . . . amplitudes (in the sense of the TD method) 
are admixed. The correlations will be called “pair scattering ground-state correlations” due to 

the residual interaction.

In the second step we diagonalize the particle-hole interaction*  Hph by 
using another linearized relation

— 2d- A^vnoAqBo) (--8)
OCT

which gives ns new and very complex correlations. They are indicated in 
fig. 3 with broken lines symbolizing correlated pairs of the type shown in 
fig. 2. 1 he formal resemblance with the correlations known from the or
dinary RPA for the “lp-lh” problem suggests the appearance of new collec
tive effects. The new ground-state correlations may be called ground-state 
correlations due to the field producing force. They exhibit the collective pre
disposition of the ground state for deformed excited states.

It should not be concealed here that these results can be derived only

* The main source of deformation in the excited states of closed-shell nuclei will be the 
repulsive particle-hole interaction (corresponding to an attractive particle-core interaction). 
This interaction forces, for example, the particles to the poles of the core if the holes are con
centrated in the equatorial plane, so that particles and holes contribute to the deformation with 
equal sign. In the SU3 model, this corresponds to lhe fact that the lowest 2p-2h states in 
O16 are those with maximum weight, namely with the SU3 representation (42). These states 
have the particles along one axis and the holes in the plane vertical to this axis. For details, 
see Lhe discussion at the end of sect. 4.1.
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Fig. 3. Correlations introduced by the particle-hole interaction Hph or by the field-producing 
force. The broken lines represent pair scattering modes: for a “particle pair” A+ if the arrow 
points upwards, for a “hole pair” B+ if the arrow points downwards. The diagram (a) is a typical 
graph taken into account in the ground state, the diagram (b) is typical of the graphs included 

in the description of a “dressed 2p-2h” system.

at the expense of giving up the Pauli principle between particles and holes 
belonging to different correlated pairs. Still, the Pauli principle is accu
rately taken into account as long as we are dealing with a 2p-2h system in 
the sense of the TD method. (For details, see section 3.3). In this respect our 
approximation is superior to the case in which the “particle-hole” pair is 
coupled to a unit, so that the Pauli principle is neglected even for a 2p-2h 
system in the sense of the TD method.

2.4 A Self-Consistent Approximation

In order to show that the solutions of our two-step procedure describe 
indeed deformed excited states, we propose a new self-consistent approxima
tion which treats the cooperation effect of the core deformation in a self- 
consistent way. The conventional Hartree-Fock approximation for the 
excited states (3) is obtained as a special case of our generalized self-consistent 
method if we neglect ground-state correlations and thus the effect of the core 
deformation.
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3. Pair Scattering Correlations

In the preceding section we have shown that it is convenient to treat the 
particle pair (and hole pair) scattering correlation before entering the full 
complexity of “2p-2h” (in the NT1) sense) or even higher excitations. In 
the present section we turn to the construction of these pair scattering modes 
and to the discussion of their properties.

3.1 The Equation of Motion

We define the operators for pair scattering eigenmodes by

CP = + (3.1)
ocß

with
V>(aß) = - ^(/?a) and ^(a/3) = - y^ßoc), (3.2)

where
/z = {N,JM,TZ}, m = {N,J,T}

characterize the pair by the angular momentum J and its projection M, the 
isospin T and its projection Z, and a set of additional quantum numbers 
N. We start with the following linearized relation in the NTD approximation:

[H, ClixCiß] — 2 (lô + ^aßyö^ö^y)

+ + , , , (3.3)
[77, t>xbß] — ZC^aßyöby + ^aßyöaöay\

yâ

The matrices M and M' are obtained by taking the appropriate matrix 
elements of eq. (3.3) with respect to the unperturbed ground state and 
2p-2h states. It is clear that only Ho, Hvp, Hhh and Hv out of the Hamil
tonian (2.5) contribute to the matrix elements M and M’. The correlation 
amplitudes ip^aß) and <p„(aß) (taken as real) are now determined as the 
solutions of the equation of motion

(3.4)

Using eq. (3.3) one obtains two coupled eigenvalue equations for and tp 
which can be written in the compact form

wm^^ß> = 2{deJ + + 2^yô}(l (3-5)
yô
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by using the convenient notation

¥>(«£) = C1 -
V/Ärf) = °a°b ^^ß\

(3-6)

where 6a is defined in eq. (2.2).
The vanishing of one of the eigenvalues o>m would indicate an instability*  

of the normal ground state(11), but according to our assumption of a normal 
ground slate we neglect this possibility. Equations of the structure (3.5) 
have been discussed previously in connection with the “independent pair 
model including the hole motion” <12) and (for the special case of J = 0) in 
connection with the “pairing vibration” <13> 14).

* In that case we have a superconducting ground state so that we should make the Bogo- 
liubov transformation.

3.2 Properties of the Pair Scattering Modes

The secular matrix of eq. (3.5) can formally be considered as Hermitian 
provided we adopt an indefinite metric expressed by the following ortho
normality relation da, 13).

(3-7)

where the sign function sfl is defined by

If none of the eigenvalues wm vanishes we also have the completeness 
relation

S^X^X^X?^) = i(öxyößö - ôaô(5^)(i -oa- ø&). (3.9)

It is now convenient to distinguish the operators of the pair scattering 
eigenmodes according to the sign s„ of the corresponding energy eigenvalue. 
Therefore we define, in formal analogy to eq. (2.1) for the fermion operators, 
the pair operators
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+ = if (>)m > 0

if < ()
(3.10) 

c = P/z if Mm > 0
" b; if < o.

The physical interpretation of the operators defined in eq. (3.10) is the fol
lowing. The operator Aß is the creation operator for a correlated particle 
pair: This means At creates two particles with the large amplitudes 
V>(aß) {for Mm > ()} and annihilates two holes with the small amplitudes 
Ç2^(a/J) {for com>0}. The operator Bß is the creation operator for a correlated 
hole paii’. This means that Bß creates two holes with the large amplitudes 
(p.ßaß) {for Mm < o} and annihilates two particles with the small amplitudes 
^(aß) {for corø<()}. In the absence of ground-state correlations, Aß and Bß 
are identical with the operators which create an exact 2-particle eigenstate 
and 2-hole eigenstate in the TD method.

The definition and physical interpretation of the creation (annihilation) 
operators Aß(Afl) and for correlated pairs enable us to define a
new ground state |0p > by requiring

^|ø;> - - 0. (.3.11)

Clearly the new ground state now contains correlations due to the inter
actions HpP, Hhh and Hy. Il is a mixture of Op-Oh, 2p-2h, 4p-4h, etc. excita
tions in the sense of the I'D method. Thus the diagrams considered in the 
ground slate and the “2p-2h” excited states (in the NTD sense) are all 
diagrams of the type given in fig. 2.

3.3 The Physical Meaning of the Approximation

We want to use the pair scattering modes as a new basis of the theory 
and so it is necessary to discuss the physical implications of our approxima
tions. For definiteness, we restrict ourselves in the following to a “2p-2h” 
problem*  (in the sense of the NTD method, thus including 4p-4h, 6p-6h 
excitations, etc). The New Tamm-DancofT method on which the present 
theory is built and which allows to describe the collective predisposition of 
the ground state has two important consequences.

* It is in principle possible(16), however, to extend the theory to a “4p-4h” problem if it 
should turn out that a simple “2p-2h” description is not adequate for O16.
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(a) The Pauli principle is violated between identical fermions belonging to 
different 2p-2h pairs. Writing down the linearized relation (3.3) implies, 
for consistency, that the commutation relations for fermion pairs reduce 
to Bose commutation rules. In other words, the 2-particle pairs aß and 
2-hole pairs by b?*  are approximated by quasi-boson operators

- Kß with = -2$a 1

by b J -> 23^ with 23^3 = - I

which satisfy the boson commutation relations

^y2<52-l = ^yiya^<5i<5a —

Kß, = lKß> ^yô] = 0.

(3.13a)

Due to eqs. (3.1) and (3.10) these 
known boson commutation relation 
and B+

t-v -V] - y-

relations are equivalent to the well- 
for the correlated pair operators Aß

(3.13 b)

Now it is clear that, within the subspace S composed of the unperturbed 
ground state and all unperturbed 2p-2h excited states in the TD sense, there 
exists the following one-to-one correspondence between the fermion space 
and the boson space:

I'M l®o>> 
and

aja/f&y *41^0  > 35 Ia^> *->  ^iß^yö\^o» \aßyö», 

where |0O>> is the unperturbed ground state in the boson space defined by 
3^1 ®o» - ®yd|0o » = 0. Thus it is easily seen from eq. (3.12) that the 
Pauli principle is rigorously satisfied in a 2particle-2hole system even though 
it is treated in the boson space.

(b) As a second consequence of our NTD method (to keep the consistency 
with the determination of the matrix elements M and M' in (3.3)), we 
observe that all occurring matrix elements of physical one-body or two-body 
operators T are entirely restricted to matrix elements taken within a sub
space composed of the unperturbed ground state and the unperturbed 
2p-2h states. This, however, is just the subspace S in which the Pauli prin
ciple is not violated by the use of eqs. (3.13).

Mat.Fys.Medd.Dan.Vid.Selsk. 35, no. 7. 2
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Thus it is possible to give a rule how to transcribe any physical operator 
T given in the fermion space into an operator t defined in the boson space <15k 
The new operator T has to be constructed such that within the subspace 5

I a2^2?/2^2/'> — < al/^171^1l 7 I a2/î2y2^2> 

«0OI 7’|a^y<5» = <ø0|T| aß/<5> 
«a/?yô|f|0o» = <<*ßyö\ T|øo>.

(314)

Since all matrix elements which occur in the NTD method are taken with 
respect to states belonging to the subspace S, we can regard the operators 7° 
as the effective physical operators in our NTD method. Clearly, if we neglect 
ground-state correlations, then, according to construction, all results obtained 
with the operator T in the NTD method are identical to the results obtained 
with the operator 7’ in the TD method.

3.4 The Expansion of Physical Operators

The preceding subsection provides us with a firm basis for expanding 
various physical operators in terms of pair scattering modes. The first task 
is to express the creation operator for two uncorrelated particles or holes 
in terms of pair scattering modes. This is easily achieved with the help of 
the completeness relation (3.9), and the result is

f,ß ^aß 

b(x bß

= 2(1 -0a-

= 2(l-0a-00)S^(a^C;.
A*

(3.15)

The next problem is to lind the effective physical operators which are con
sistent with our NTD approximation. As an example, let us consider a 
physical one-body operator £ :

Then, the rule (3.14) easily gives us the transcribed operator

2~aß •c a cß ■ 2 ^ß ^a (la ß (lß^a)‘
aß aß

(3.16)

which is equivalent to the replacement

aß y
(3.17)

(la^ß 2?£y% and bfibx -> 2^^/^ay 
y y

(3.18)
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In order to get the expansion of one-body operators (3.16) in terms of pair 
scattering modes C+ and C, we have now only to insert (3.15) into (3.17). 
As an application of the resulting expansion, one can easily find that the 
total number operator of our system

91 = 2caca = 2(aaaa “ ^a^a) + total number of particles in the system (3.19) 
a a

is expanded as

9i = - Bf( Bfl) + total number of particles in the system. (3.26)

Similarly, the ^-component of the angular momentum operator

J = T<^\J^ß>0ab0TxTö-cacß- (3.21)
' aß ' aßt

with

<« I I > ^b = <Å 1 ™ßBI ja ma > [jaUa + 1 Hb
is expanded as

= 2(?l^/zl °y^rs^z z (-^ A<j ~ Kg Bq) (3.22)
Q(J y

with
<el^k>«rs - <JsiMrfurA/8>|/jy^+T)a„.

The formal analogy to the usual expressions in the fermion space indicates 
the usefulness and, in fact, the simplicity of the expansion in terms of pair 
scattering modes.

3.5 The Expansion of the Hamiltonian

The rule (3.14) also enables us to expand the Hamiltonian in terms of 
pair scattering modes. Each term (2.6) in the decomposition (2.5) of the 
Hamiltonian can be transcribed into the boson space. The result is

^0 A) ~ l2(£a + £b)(9laJg?ïa^ - ^aß^aß) 
aß

(3.23 a)

Hpp ^pp = 2 ^aßyö^-aß^yö 
aßyö

(3.23b)

Hhh ^hh = 2 Vaßylffiaß^yö 
aßyö

(3.23c)

Hv HV =2 uaßyö(^aß^Öy + ^aß^öy) 
aßyö

(3.23d)

2*
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Hph -> Hpa = - 4 2^20,2^ <3-23e>
ocßyö e <p

HY 0. (3.23 f)

As has been discussed in section 2.1, the operator IIY does not contribute 
in our approximation where only states with an even number of particles 
and holes are considered. This is shown once more in eq. (3.23f).

Remembering that the pair scattering modes were constructed to take 
into account the interaction terms Hpp, H^n and Hy, we calculate the com
mutators

ß?o> Kß] and töo» ®iß\
where

$o = + Hpp + + ^v- (3-24)

Using eqs. (3.13) and (3.23) we regain the equations (3.3) which had 
been the starting point in constructing the pair scattering modes. Corre
spondingly one obtains for the expansion

- /y«,.)- (3.25)

This confirms once more the internal consistency of the transcription rule 
(3.14) with the linearization approximation (3.3).

So far the particle-hole interaction has not been considered at all. But, 
in the following section, it will be of great importance as the source of new 
ground-state correlations which reflect the collective predisposition of the 
ground state for deformed excited states. The desired expansion in terms 
of pair scattering modes is obtained by inserting (3.15) into (3.23e). This 
leads to

U» - 2 WcUe6'<A+- <3-26)
[IVQO

Now it is convenient to rewrite Hph as a normal product (symbolized by • '; ) 
with respect to the operators A4 and B+. The necessary contractions give us 
a renormalization of the single-pair energies a>m which should be determined 
in a self-consistent way. Here we assume for simplicity that the renormaliza
tion is already incorporated in the definition of com. So we can write

llph ~ 2 : : (3.27)
[A.VQG

where the transformed potential matrix element has the symmetry



Nr. 7 21

y = V' [IV O (J ’ QO/XV

and is explicitly defined by
(3.28)

V
' [iVQQ - 64 2' 2' VaßyösfisvsQs^^YIf^y^Xf/v(<ß(p^o^(p) 

ocßyö eq)
(3.29)

4. Interaction Between Pairs

In the preceding section, a new basis system has been constructed which 
consists of pair scattering modes for particles and holes. The properties of 
these modes have been investigated, and it has been shown how to express 
all operators of physical interest on the new basis. After this preparation we 
can turn to the proper aim of the present work, namely the collective descrip
tion of even parity states in closed-shell nuclei. The present section, therefore, 
is devoted to the formal solution of the problem, whereas the following sec
tion will show where the deformations in the excited stales come in.

4.1 The Hamiltonian in Terms of Pair Scattering Modes

Using the expansions (3.25) and (3.27), we can write the Hamiltonian of 
our system in the form

H — + Hph (4.1)

In analogy to the procedure of section 2.2 we now decompose the Hamil
tonian in various terms

H — + Qpp + ^hh + Qph 4 fyy + Qy,

where .*p 0 is given in eq. (3.25) and

Qpp 2

= 2 Vp.vQ'jBp'Bv BqBq 
[À.VQO

[IVQ6

= 2 ^{^^5+3+

(4-2)

(4.3a)

(4.3b)

(4.3c)

(4.3 d)
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Fig. 4. Graphic representation of the matrix elements arising from the particle-hole inter
action or the field-producing force. The broken lines indicate pair scattering modes, for a “particle 

pair” if the arrow points upwards, for a “hole pair”, if the arrow points downwards.

Finally, contains all possible matrix elements analogous to Hy in (2.6). 
If we graphically symbolize a correlated pair by a broken line, we can 
depict in fig. 4 the matrix elements of each part of the particle-hole inter
action Hph by diagrams which are formally similar to those of lig. 1. In 
order to illustrate the physical meaning of these new diagrams, typical 
graphs contributing to ^ph and are shown in fig. 5 in the conventional 
representation. From the structure of defined in eq. (3.29) it is seen 
that, in the absence of ground-state correlations due to pair scattering (see 
fig. 2), only the first term in (4.3 c) survives among all the terms occurring in 
(4.3). This term is represented in fig. 5(a). Ils significance will be discussed 
in section 5 in connection with deformations for the excited states. The 
appearance of diagrams of the type indicates that the interaction between 
pairs introduces a new kind of ground-slate correlations, which will be shown 
later to describe the collective predisposition of the ground state for de
formed excited states.

Here, it should be pointed out that the interplay between the effect of 
the field-producing force and the effect of the residual interaction is especi
ally important in producing this new type of ground-state correlations. This
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(a)
Fig. 5. Typical diagrams in the conventional fermion representation which contribute to the, 
term Hp/t decomposed in fig. 4. The diagram (a) occurs, for example, in $[)h, and (b), for example, 

in

is most obvious in the limit where the pair scattering ground-state correla
tion due to the residual interaction vanishes. Then the new correlations 
due to the field-producing force, Hpn, vanish as well.

At this point it might be appropriate to discuss a shortcoming of the 
present treatment in the two-step method. With the aim of taking into ac
count the “residual interaction effect” in the first step, we have split the 
Hamiltonian into Hpp + Hnn + Hy and HPh, and then have diagonalized 
Hpp + Hnh + Hv only in the subspace of two particles and in the subspace of 
two holes (including pair scattering ground-state correlations). In the second 
step, HPh was taken as the field-producing part of the interaction, which 
acts between different pairs. As a result, those parts of HPP and 7/*̂  which act 
between different pairs have been neglected. Physically, this means that the 
neglected field-producing (i.e., long range) parts of Hpp and ///,/; are assumed 
to be unimportant compared to Hpn. Indeed, if we considered a “2particle- 
2hole” system (in the NTD sense), the parts discarded in HPP and J/ää would 
enter only via ground-state correlations, in contrast to Hpn. Thus, their influ
ence*  would presumably be very small compared with the influence of HPh. 
Moreover, the main source of deformations in the excited states of closed- 
shell nuclei will be the repulsive particle-hole interaction (corresponding to 
an attractive particle-core interaction). This interaction forces, for example,

* In model calculations it turned out that the interaction (£/*»)  between particles (holes) 
belonging to different pairs was not at all important for the deformation obtained. See also the 
arguments at the end of sect. 5.3. 
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the particles to the poles of the core if the holes are concentrated in the 
equatorial plane, so that particles and holes contribute with equal sign to 
the deformation.

To avoid the above shortcoming of our treatment, it is useful to divide 
the interaction into the residual interaction (with a short range) and the 
field-producing part (with a long range). In this case, the first step of our 
treatment corresponds to the diagonalization of the short range force, and the 
long range force then gives rise to the deformations in the excited states and, 
at the same time, to the collective ground-state correlations discussed above. 
The only formal change which results from this decomposition of the Hamil
tonian is to modify the definition of the interaction matrix elements 
in (3.29) by dropping the restriction on the summation, i.e.,

v^Q(y = -64 2 
aßyö e(p

Thus, the field-producing parts of Hpp and Hhh are fully included in the 
Hamiltonian (4.2). It is unnecessary to say that the original division (2.5) 
of the Hamiltonian has been chosen simply because it is more clear-cut 
from the formal point of view.

4.2 Collective Modes in the Excitation of Closed Shells

In order to investigate the collective modes due to the field-producing 
force we start from the following linearized relation:

[h,a+b;-\ - + N'maAQBa). (4.5)
QO

By taking the appropriate matrix elements of eq. (4.5) with respect to the 
(unperturbed) eigenstates of £>o, it is seen that the coefficients N and N' 
contain only matrix elements of §o, fyph and In this approximation we 
can define the creation operators of eigenmodes (or “phonons”) for even 
parity excited states of closed-shell nuclei as solutions of the following equa
tion of motion :

[H,AŸJ = with > 0, (4-6)
where

(4-7)
fiv

with
2 - {L,IM,TZ}, I - (4-8)
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Here, A means the set of quantum numbers composed of the angular mo
mentum I and its projection M, the isospin T and its projection Z and, 
finally, a set of additional quantum numbers L necessary for a complete 
specification of the “phonon”. Correspondingly, I stands for the set A with 
the exclusion of the projection quantum numbers M and Z. From eq. (4.5) 
one obtains the eigenvalue equation for the functions an<4
(taken as real) :

= 2 ~ ^Qcr/LLV VåCQG)}
e° , (4.9)

QO

Eq. (4.9) has the same structure as the well-known equations for “1 particle- 
1 hole” excited states in the RPA, and thus we have the usual orthogonality 
and completeness relations

with

/uv

= ôfioôvO

- ^(z^)b(e^)} = o
a

(4.10a)

(4.10b)

E»z > 0.

From these relations we get immediately the inverse expansion to eq. (4.7)

A^Bv = 2(b(^)Aï “ %(^)A2>-
2

(4.11)

We are now in a position to define the new ground state for closed- 
shell nuclei by

XÂ|¥'„> - 0 (4.12)

and similarly the excited even parity states of closed-shell nuclei by

i^> = w (4.13)

It is clear from these delinitions that both ground state and excited states 
contain very complex correlations, namely all diagrams of the type indicated 
in figs. (3 a) and (3 b).
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In order to understand the physical significance of these ground-state 
correlations, let us first see what happens if we neglect them. (This also 
means that we neglect the ground-state correlations due to the residual 
interaction). In that case the linearized equation (4.5) reduces to the equa
tion of the TD method for a 2p-2h system. As an approximation to the TD 
method one may use the Hartree-Fock approach which is known to 
yield intrinsically deformed 2p-2h states and a spherical ground state. Let 
us now gradually switch on the ground-state correlations and correspond
ingly treat the problem in our NTD method. This procedure will gradually 
decrease the energy of the excited states. Al the same time it will leave the 
excited states deformed and the ground state spherical, until, with increasing 
interaction strength, the smallest excitation energy (i.e., the lowest L)) passes 
through zero. Then the spherical ground state becomes unstable and under
goes a phase transition into a deformed state.

Although the physical ground state is spherical, it has a collective pre
disposition to produce deformed excited states due to the symmetrical treatment 
of ground state and excited states in our NTD method. This is in contrast to 
the “lp-lh” problem in the usual RPA, where a spherical (deformed) 
ground state is always associated with a spherical (deformed) excited slate. 
The difference is that a pure 2p-2h excitation is intrinsically deformed by 
itself. The bare deformation of the 2p-2h excitation has a further conse
quence: Due to the ground-state correlations the “dressed 2p-2h” excited 
states defined by (4.13) possess a “dressed” deformation which includes, 
and is amplified by, the cooperation effect of the core deformation.

5. Deformation of the Excited States

In the preceding section, general solutions were obtained in a spherical re
presentation, so that the deformation of the excited states would only mani
fest itself in a rotational band structure. In this section, however, we want 
to set the deformation into evidence more directly, using a sequence of 
successively generalized self-consistent field methods. For simplicity, we 
adopt a separable field-producing force. Starting from the conventional 
Hartree-Fock approximation <3\ we easily see how to generalize the method 
in order to take into account the residual interaction. A final generalization 
treats the full core polarization due to the collective ground-state correlations 
in a self-consistent way. This turns out to be an approximation to the general 
solutions of section 4, thus explicitly demonstrating their deformed nature.
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5.1 A Separable Field-Producing Force

In order to see the origin of the deformation in the excited state more 
clearly, it is convenient to divide the interaction into the field-producing 
(long-range) part and the residual interaction (short-range part). For sim
plicity, we furthermore assume the field-producing force to be separable:

Hf = ~ t2 Xl'-QlmQlm'- » (5-1)
LM

where QLm is given by

Qlm = (5.2)
aß

With the aid of the rule (3.14) and eq. (3.15), the operator QLM is expanded 
in terms of pair scattering modes as

Qlm = 2(/' I QlmIv) ■ ’ (5-3)
/IV

where
= 4 2 - 0C)sv^v(M‘ (5.4)

aßy

Thus, one may write down the field-producing force in terms of the pair
scattering modes in the following form:

44/ = ~ 1 2 Zl : Qla/Qlm : • (5-5)
LM

For later discussions it is convenient to divide Qlm an^ Hf into the following 
parts :

Qlm = Qlm + Qlm >

Hf = +^(2) +^(3)}

ftd) - _ ± y v : Ö(1> O(1) + : 
" ~ 2 Zzl - \!lm^lm ■

LM

ft (2)   I y v : o<2) 0(2) + : 
'V _ 2 2-, Xl • VlmVlm ■

LM

LM

where
oa - S(^IQ£M1”)(AX + B,+B^)

p,v

[IV

(5-6)

(5-7)

(5-8)
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The term <S?(3) in eq. (5.7) corresponds to in eq. (4.2) which has played 
no role in constructing the collective excited states discussed in sec. 4. For 
consistency, we therefore discard §(3) in the following. It should be noted 
that, in the absence of pair-scattering ground-state correlations, only ()^ 
and $(1) survive. This is easily seen from the structure of (/u\QLM\v) ‘n 
eq. (5.4).

5.2 An Extension of the Hartree-Fock Approximation

The origin of the deformation in the excited states can be traced most 
clearly using the self-consistent field method which leads to the notion of an 
intrinsic deformation in a natural way. In this subsection we investigate the 
mechanism which leads to intrinsic deformations in the excited states in 
the case without ground-state correlations.

In this case, the exact 2p-2h eigenstates are given by

l®A> “ 4™ + |0o>, («a|0o> ■ 6a|0„> - 0) (5.9)

with their creation operators

autz»+ = 2 fx(aßyö)a^a^b+b^. (5.10)
<xßyö

The function (taken as real) satisfies the eigenvalue equation

= 2 , LX2ß,y^,oc1ß1y1ölf^2ß27202\ (5-11)
oCißzy^öz

where the coefficients L are defined by the usual linearized relation char
acterizing the TD method:

It is known that the eigenvalue equation eq. (5.11) can also be obtained 
from the variational principle

y<®oiyri,),Hxfi,,+[«>o> - ßrD,<«>oi4Ti”.4I'D>+i0o>} - ». <5.i3)

The intrinsic deformation of a state 411 eq. (5.9) with J = 0 will 
manifest itself in a Hartree-Fock approximation <3> 4) in which the trial 
function for f^ocßyö) is taken as

(ÎI: the antisymmetrization operator) 



Nr. 7 29

with separate orthonormality conditions among the ip and (p. The variational 
principle leads to the well-known single-particle problem in a self-consi
stent field, whose deviation from the spherical shape defines the intrinsic 
deformation of the stale with J = 0.

In the above Hartree-Fock approximation, the residual interaction is 
completely discarded, as is clear from its definition, and only the field
producing force is taken into account. To overcome this shortcoming we 
can use the following procedure:

(a) In a first step we diagonalize the residual interaction. The operators 
of pair scattering eigenmodes are then of the form

(5.15) 
aß yô

to which the operators of the pair scattering eigenmodes defined in eq. (3.1) 
are reduced when the ground-state correlations are neglected. Within the 
subspace of 2p-2h excitations the Hamiltonian can thus be written

(5.16) 
fl V LM

Here, QlmTD) is given by

QlMTD>> = 2 (zzll Lm\+ 2 (rll Qlm\Vz)TDBtBVi’ (æl?)

to which Qlm defined by eq. (5.6) is reduced in the absence of ground-state 
correlations.

(b) In the next step, we use a variational approach, taking a trial state 
vector for |^o> with J = 0 as follows:

l®Z.> ~ I0«.) - (^I®o> ■ 'M) • 0) (5.18)
with „

K = 2«d»Ait Bt = 2^.«.
v T5.191

2 «£(/') = 2y?.(v) = !•
fl V

The variational principle for the Hamiltonian (5.16) gives the following 
self-consistent eigenvalue equations with ßz(oT2)) = :

wtTD)l,iM = - 2t/ÅS^-o(r2)
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where
^^2 = ~ 2 f’zÏTD' XLM

LM
= _ 2 Xl(~)M(V1^ Ql-M Vï)tD ' XLM’

LM

xlm = 2 (ri! r2)7np;0(’’i)p;0(r2)
l'lD

aLM = 2 (/hl
w

The eqs. (5.20) constitute a self-consistent field problem 
of two particles or two holes. The particle pair is movini
generated by the hole pair, and vice versa. Thus, the intrinsic deformation 
of the state |0/o> with J = 0 is given by

^Lj^LM^Lj^ = aLM + aLM aLW (5.22)

The situation obtained by solving (5.20) is illustrated in fig. 6 for a simple 
model.

In order to see the connection with the Hartree-Fock approximation 
(5.14), it is noted that the derivation of eqs. (5.20) is essentially equivalent 
to a variational approach with the following choice of the trial function for 
//Jjxßyft) in eq. (5.10):

f^aßyö) ~ fu,(aßyö) - (5.23)
with

fio(°<ß) = - i'i£ß<*)>  fja(r0') = ~ fj0(ôy)-

In this procedure the Pauli principle is taken properly into account, as was 
pointed out in section 3.3. The two steps used in deriving eqs. (5.20) are 
just a convenient but unessential decomposition of fig and fja into

Æ(^) = 2^(zzMTZ)W) and fjXr0') = 2vi£v)riTDKôy)-
[J, V

From the variational point of view, therefore, the procedure is simply a 
generalization of the Hartree-Fock approximation with the purpose of 
taking the residual interaction properly into account.

5.3 The Origin of the Intrinsic Deformation

So far we have considered the simplified case in which the ground-stale 
correlations are completely discarded. However, the formal extension of 

(5.21 a)

(5.21 b)

for a single pair
2 in the field Uw
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the treatment given in the previous subsection to the case in which the pair 
scattering ground-state correlations are taken into account is straightforward. 
We only have to consider the Hamiltonian

^, = 2comA^Afi-^a,nDvBv + ^{1}- (5.24)
/Z V

where $?(1) is defined in (5.7). Then we construct the eigenstates of corre
lated “2p-2h” excitations

I = S \ >. ‘ 0), (5.25)

with the aim of diagonalizing the Hamiltonian (5.24) within the subspace 
composed of the unperturbed states Instead of solving the
eigenvalue equation for directly, we use a similar variational approach 
as in section 5.2. To this end we assume for an eigenstate (5.25), | 0^ ) 
with J = 0, the following trial form

IA..> - Kj.> - (5-26)
with

At =
v (5.27)

2 *4,00  = SZb-o(r) = k
fl V

The variational principle with the Hamiltonian (5.24) leads to self-consistent 
eigenvalue equations which are identical with eqs. (5.20), except that the 
label (TD) has to be dropped everywhere. For the sake of later reference, we 
just write down the coupled equations

Wi0^i) = + 2 U^Ul^z)

, (5-28)

All quantities here are defined by eqs. (5.21) if the index (TD) is disregarded. 
The intrinsic deformation for the state |0£> with J = 0 is given by

= (5.29)

where QLM is defined by eq. (5.6) and we have used the result 
( = d- In contrast to eq. (5.22) the new equation (5.29)
now defines an intrinsic deformation aLM which contains the core polarization 
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effect due to the pair scattering ground-state correlations. This situation is 
illustrated in fig. 7 for a simplified model.

Now the origin of the intrinsic deformation in the excited states is obvious. 
The essential part of the field-producing force responsible for the deforma
tions in the excited states is just the interaction The interaction $<D 
survives in the absence of ground-state correlations, and can be visualized 
physically as the repulsive particle-hole interaction as follows: Let us de
compose into

where and have the same structure as eqs. (4.3 a) and (4.3 b), 
respectively, and

= ~ 2 2 2 (/zil Qlm\ri)(/z2l Ql-m\(5.31)
LM /.Zil’i (J,2V2

We can see that only which arises mainly*  from the particle-hole inter
action, contributes in the “2p-2h” problem since the expectation values of 

and with respect to |^0> are zero.

* This is easily seen by neglecting the pair scattering ground-state correlations. In this 
case, only the particle-hole interaction contributes to Correspondingly, and 
are just reduced to the field-producing (i.e., long range) parts of H and // that have been 
discussed in section 4.1.

On the other hand, the interaction §(2) vanishes in the absence of ground
state correlations and will become important for constructing collective 
ground-state correlations due to the field-producing force. This will be 
elucidated in section 5.4.

Numerical Calculations for a Simple Model

The coupled self-consistent equations (5.28) describe a correlated particle 
pair moving in the field produced by a correlated hole pair, and vice versa. 
In order to investigate the deformation-producing mechanism, we adopted 
a simplified model and solved eqs. (5.28) self-consistently. In zeroth order, 
the model consisted in one occupied level with angular momentum jh and 
one unoccupied level with angular momentum j . The spacing of these 
levels was taken to be 2eo, with eq serving as an energy unit. The interaction 
was taken to be composed of the conventional pairing force with the strength 
Go and the conventional quadrupole force with the strength / (both measured 
in units of co)- This system was found to have the following properties:
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Fig. 6. Illustration showing the instability of a spherical 2p-2h excitation with respect to de
formation. Details are explained in the text.

(a) Defining the deformation ß = ßp + ßh as the dimensionless angular 
part of a20 in eq. (5.29), the following dependence on the parameters / and 
Gq was obtained. For a fixed strength of the pairing force, the spherical shape, 
ß = 0, is stable as long as the quadrupole force is sufficiently weak. For 
increasing / the spherical shape becomes unstable, and two stable deformed 
solutions emerge, one with a positive and the other with a negative deforma
tion. For large / the deformation tends to a saturation value. The energy 
is lowered roughly linearly with /, starting from the point at which the 
system becomes deformed. For reasonably weak pairing forces (Go < 0.15) 
the results are not very sensitive to Go. Therefore we illustrate the stability 
situation in fig. 6 for Go = 0, choosing jp = 7/2 and jh = 5/2. For simplicity, 
we restrict ourselves in fig. 6 to particle pairs and hole pairs with J = 0 
and J = 2, measuring / in units of the arbitrarily fixed energy splitting 
between these levels. Inclusion of all possible values of J changes the result 
by less than 10 percent. In fig. 6 we use ßh = ßinput as an input parameter 
and plot the difference (^calc-^input) of the hole deformation (calculated 
according to eq. (5.28)) and the input deformation as a function of /?input.

Mat.Fys.Medd.Dan.Vid.Selsk. 85, no. 7. 3 
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Evidently, self-consistency is obtained for (ßCaic_Anput) = b, but the solu
tion is stable only if the derivative d(/?calc-^input)/d/?input < 0. Il is seen 
that the spherical solution becomes unstable between / = 0.6 and / = 0.7.

(b) In all calculations with an attractive quadrupole force (/ > 0) the 
particle deformation, ßp, turned out to have the same sign as the hole de
formation ßh. This feature is decisive for obtaining stable deformations and 
is due to the mutual repulsion of particles and holes for / = 0 (see also 
footnote on p. 12).

(c) For a fixed value of % the deformation decreases with increasing Go, 
for small Go slowly, for large Go more rapidly. The reason is the following: 
Increasing Go enlarges the energy splitting between the particle (hole) pair 
states with ./ = 0 and .1+0, thus diminishing the ability of the quadrupole 
force to mix the levels and to produce deformations.

(d) In our model the pairing force introduces ground-state correlations 
and consequently an admixture of 4p-4h, 6p-6h, ... to the dominant 2p-2h 
configurations. That is, the pairing force leads in a natural way to core 
excitations. In order to investigate the effect of continuously increasing core 
excitations we used in fig. 7 a fixed spectrum for the pair scattering modes, 
unaffected by the pairing force and simulating an “experimental” spectrum. 
The energies of the particle (hole) pair scattering modes were arbitrarily 
assumed to be Ej/e0 = ±(1.5+ 0.1-J) for J = 0,2, . . ., 8. Fig. 7 shows 
how the pairing force in this case increases the deformation, and decreases the 
energy by admixing 4p-4h, 6p-6h, . . . configurations. The vertical line 
indicates the phase transition to superconductivity. When approaching this 
point, the deformation becomes much larger than the limiting deformation 
which can be obtained for a pure 2p-2h excitation. Thus the pairing force, 
by introducing ground-state correlations, softens the core so that the quadru
pole force can efficiently produce deformations. However, since we disregard 
the effect of the pairing force which stabilizes the spherical shape as discussed 
under (c), the deformation plotted in fig. 7 gives us only a measure of the 
“triggering effect” for deformations. The actual deformations are mainly 
due to the core deformation effect which enters through the collective ground
slate correlations discussed in sect. 4. Thus, the core deformation effect due 
to the field-producing force is triggered by the core softening effect due to the 
pairing force.
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Fig. 7. Self-consistent deformation and self-consistent energy as functions of the strength Go 
of the pairing force for various strength parameters / of the quadrupole force. Details are ex

plained in the text.
3*
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5.4. A Self-Consistent Method Including the Core Deformation

In the preceding subsection we have traced the origin of the intrinsic 
deformation in excited states. Now we are in a position to present a method 
which demonstrates explicitly the intrinsic deformation of a “dressed 2p-2h” 
state containing the collective ground-state correlations. To do this, it is 
usefid to note that the eigenvalue equation (5.28) can also be obtained from 
the following procedure.

(a) In a first step we introduce the approximation

$ph ~ 2 Zl( " )M 2 (/' I Ql - M \ vWv Bf< • XLM
LM [iv

~ 2 Zl(_)M2(/<I A»’> (5.32)
LM [IV

+ const / 2zL(-)MaSia?-Mj =

with
= 2 (A Q-LM^^ ^[l^V^

[IV 

XLM = 2(/ZK?LmI B[t>
[iv

where > and (B^Bfl) are expectation values which will be deter
mined later in a self-consistent way.

(b) As the next step we construct the eigenstate

i^> = (5.34)
[IV

with the aim of diagonalizing the following Hamiltonian within the subspace 
composed of the unperturbed states Au/1^ |0q >:

7/'(a) =  + ^S(a)- (5.35)
[I V

(c.) The expectation values and <B7t are determined self-consi-
stently by the condition

y = <b+b„>. I ç ■

We can easily see that the eigenvalue equation for «^(/zr) defined by eq. 
(5.34) is identical to the equation obtained by the variational approach 
which is described by eqs. (5.26) and (5.27) and yields £i;-(/zv) = i/^/z)u;(r).

This equivalence leads immediately to a self-consistent method which 
demonstrates explicitly the intrinsic deformation in the “dressed 2p-2h” 

(5.33)
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states subject to the cooperation effect of the core deformation. This method 
consists of the following operations: With the Hamiltonian

W(a) - 2»my^ - n, + »&’(«) + + ^S} + ®<2). (5.37)
jU V

we start from a linearized relation similar to eq. (4.5)

[H(a),A;ß+] - 2{iVwo(«)A+/Jj + (5.38)
QG

where the coefficients Ar(a) are now functions of all «X/ and The 
creation operator of the eigenmode, which satisfies the relation

is then given by
[H(a),X+] = with Qy > 0, (5.39)

+^X^)AtÄ}- (5.40)

Here, y is a set of quantum numbers specifying the excited state under 
consideration

= x+|^0>, (x?|Y>0> = o). (5.41)

With the aid of eq. (5.38) the functions £^(/<v) and r]y(jiv') are seen to obey 
the eigenvalue equations

^y^yÇ^v>) 2^Xocr/Zl'(a)^y(Pcr)

QyVy^P'V') ~ ~ ~ ^oo/iv^y^Q^}'
oo

(5-42)

The orthogonality and completeness relations of £y(jtv) and ^(^v) are of 
the same form as eq. (4.10).

The quantities a£^ and are determined self-consistently by

(5.43)

Now it is clear that the eigenvalue equation (5.42) with the self-consist
ency condition (5.43) is simply a generalization of eq. (5.20) with eq. (5.21) 
for the purpose of taking the cooperation effect of the core deformation into 
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account. The intrinsic deformation of the “dressed 2p-2h” states associated 
with the core deformation is now given by

aLM = QlmI = 1 aLM- (5.44)

Here we have used the result /*/f,  = 0, which follows immedi
ately from eq. (4.11). The operators (J^ and (J^ are defined by eq. (5.8).

Obviously the eigenvalue equation (5.42) is an approximation to our 
general equation (4.9), thus demonstrating explicitly the deformed nature 
of the excited states obtained as solutions of (4.9). The ground state defined 
by (4.12), however, is spherical, and only if eq. (4.9) had a zero-energy 
solution, it would be really deformed. This has been discussed in section 
4.2. Correspondingly, the ground slate defined by eq. (5.41) will be “spheri
cal” unless the eigenvalue equation (5.42) has a zero-energy solution.

We now want to solve the eigenvalue equation (5.42) in a way which 
explicitly traces the effect of §^(a) responsible for the intrinsic deformation. 
For this purpose we divide the Hamiltonian (5.37) into two parts:

Ä(«) - Ho + I

A = 2«mA^-S^b,+ I (5-45)
/I V '

and introduce the eigenmode creation operator with respect to 7/0:

+ - 2{fJ0,(/<r)A + Br+ + (5.46)
/IV

which satisfies
[H0,Af)+] = £<0)X]0) + with f?<0) > 0. (5.47)

The functions ^0)(/zr) and rA0)(/zv) clearly satisfy the eigenvalue equation 
(5.42) with = (). Similarly as in the usual RPA for “lp-lh”
excitations, we then obtain the well-known formulae*
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^0) (/zv) =
M(rl f1)
- *>n)  + ty0) ’

(5.49)

where Nt is the normalization constant determined by eq. (4.10 a). States 
like those created by the operators Aj0) + are conventionally called spherical, 
similarly as the “lp-lh” states in spherical nuclei known from the usual 
RPA. This is consistent with our definition of the intrinsic deformation <xLM 
and reconfirms the conclusion of the preceding subsection that §$(<*)  is 
the origin of the intrinsic deformation in the excited states of closed-shell 
nuclei.

Using Aj0)+, we now can write the creation operator X% in eq. (5.40) 
for a deformed excited state as

2 2
- + 2

[tv 2

(iv 2 2

- (5.50)

Then eq. (5.42) simply becomes a self-consistent equation for Uy and Vy. 
The functions Uy and Vy describe the effect of §^(a): if = 0,
then Vy(A) = 0 and Uy(2) = ôy^. The requirement that the operators Xy 
and A^<0) + each form a set of boson operators entails the orthogonality rela
tions

A

- vyi(A)t/r.(A)} - o,

r
KUyWv^-v^u^-)} - 0,

■ (5.51)

and the inverse relation to eq. (5.50)

y (0) +
a2 = 2^(Â)Xy+-2Vy(Â)Ay. 

y y
(5.52)
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5.5 Intrinsic Deformations in Excited 0 States

In this subsection we restrict ourselves, for simplicity, entirely to quadru
pole deformations. This corresponds to taking up only the L = 2 part*  in 
the expansion (5.32) of >5^(a). If the excited 0+ state defined by 
eq. (5.41) has an intrinsic quadrupole deformation (i.e. a2M 4= 0), then the 
solution must have the appropriate degeneracy to contain all possible orien
tations of the “excited deformed nucleus’’ in space. Without loss of generality 
we therefore can choose the axes of the intrinsic deformation as coordinate 
axes, so that a2 A/= ! = a2 M = _1 = () and a2 M = 2 = a2M = _2. Furthermore 
we assume, for simplicity, that the intrinsic deformation in the excited 0+ 
slate is axially symmetric, so that a2 M = 2 = a2M = _2 = 0. In this case, 
the intrinsic deformation is characterized by one quantity

* Of course, the L = 0 part in will contribute even under this restriction. However,
the effect of this term is only a renormalization of the single pair energy corø for Jm = 0. In the 
following we assume, for simplicity, that the renormalization has already been carried out.

a2M = o = ß- (5.53)

The projection Ky of the intrinsic angular momentum on the symmetry 
axis now is a constant of the motion, so that Kya = 0 for our excited 0+ 
stale. We need not say that eq. (5.42) gives us the information about the 
intrinsic excitations in the body-fixed coordinate system and eq. (5.37) pro
vides the intrinsic Hamiltonian of our system.

The excited 0+ state under consideration, d/7,, > with K., = 0, in /o /o
eq. (5.41) is given by

i^o> =
with

y. - 2 > + + 2 VW. (5.54)

Thus the eigenvalue equation (5.42) for this state becomes a self-consist
ent eigenvalue equation for L^o and

(S. + o'bM2,) - +Ww)W)
2a

+ zS(GJV” + Gg/'bOA)
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where %=%£,= 2 and

= 2 (elO2ol°') 2
QG H

<»e = s<7 = - h (^ = + D

FS, = 2 OIO20W 2
UV o

” «r = + D <SQ = ~

<4X = 2 (elO2ol<> 2 +
QG (I

%=«ff = -1) (^=+1)

= 2 OIQ20IO 2
/ZV Q

(SH = ®F = + D % = - 1)

The quantities /9(î>) and ß(h) are determined self-consistently by

(5.56)

ßm - 2o<io2oi-xï'?.i.y.4jï'),.>
/ZV

ß(h} = 2(?K>2o^)<^J^Bel^o>- 
e<T

(5.57)

To evaluate eq. (5.57), we first note that the operators

2C“IC2olï')A/tAr and 2(elQ2ol°r)ßJße
(IV QG

can be expanded in terms of the operators Xj0) + as follows :

(IV ÂJ.2
- 25(/‘IQ2»i-)EC(wX(^)aT+aT,+ + 2^(w)4?WATAn

Â1A2 /UV Q Q

S(elQ2olOBjBe = 2m-N?l+<
QG Â1Â2

- 2 2 (el (U) [2f£’(/-)^,(w)AT’ +AT+ + 2<(^f(/<e)AM%
ÂiÂs øer /z (i

In obtaining eq. (5.58), we have used a transcription rule similar to eq. 
(3.14), and then have employed the relation (4.11) with respect to AT0)+. 
Finally, by inserting eq. (5.52) into eq. (5.58), we get the deformations

A.A. L. 5g,
+ 2

Z1Â2 ?
Mat.Fys.Medd.Dan.Vid.Selsk. 35, no. 7. 4

(5.58)
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ß(h) = +
ÂlÂs

> (5.59b)

In the expressions (5.59a) and (5.59b) we have already dropped the fol
lowing terms, respectively:

+ SGß/2t7y(^i)^(;i2) (from (5.59a)), I 
y u y (5 60)

(from (5.59b)).
zd.s ’ ’ 7 V 7

These terms occur not only in the excited 0+ states l^fy, > in which we 
are interested, but they are also common to all other excited states l^7., ). 
The sum of both terms can thus be interpreted as an “unphysical deforma
tion’’ of the spherical ground state (delined by eq. (5.41)) given by

(5.61)

We are now in a position to write down the final result for the intrinsic 
deformation ß of the excited ()+ state. The result is

2 (Gfö. + dDf^.GÛM^) + vr^i)Uy.<M}.

(5.62)

Here we have used the fact that (V7^ | | V7^ = 0, which follows
from a relation analogous to eq. (4.11). The operators (J^ and Q$ are 
defined by eq. (5.8). From the definition (5.56) of F and G, it is obvious 
that in the absence of ground-state correlations due to the field-producing 
force (that is, if ^;0)(^r) = 0 and Vyo(Â) = 0, (see eq. (5.50)) only the 
first term in eq. (5.62) contributes to the deformation. Thus the expression 
(5.62) allows us to identify clearly that part of the deformation in the ex
cited state which arises from the cooperation effect of the core deformation.



Nr. 7 43

5.6 Rotational Bands Built on Excited States

The basic equation (5.42) of our self-consistent method describes the 
intrinsic excitation in the body-fixed coordinate system associated with the 
intrinsic deformation of each excited state. Thus the state vector |¥zy> in 
eq. (5.41), describing the intrinsic excited state, has no definite angular 
momentum. The proper eigenfunctions with definite angular momenta are 
then obtained by the usual projection operation 66), which also yields the 
rotational band structure belonging to the intrinsic excited state fV',).

To avoid the problem of computing overlap integrals in this method, 
we may apply the conventional Bohr-Mottelson description to our problem. 
Then our system is described by the following effective Hamiltonian:

(5.63)

where 77(a) is given by eq. (5.37) and Ry is the component of the “collec
tive” angular momentum in the direction of the x-axis of the body-fixed 
coordinate system, and the quantities are the principal moments of 
inertia.

The physical interpretation of eq. (5.63) is the following: A specific 
intrinsic excited state |V/y> defined by eq. (5.41) is created by applying 
the operator Xy to the spherical ground state of the closed-shell nucleus. 
Once the state is excited, we can choose the body-fixed coordinate system 
determined by the axes of the intrinsic quadrupole deformation of this 
excited state. The corresponding moments of inertia of the state > can 
be calculated. With these moments of inertia the intrinsic excited state per
forms a rotational motion which gives rise to a rotational band belonging 
to this specific slate |¥/y>. The explicit calculation of the moments of 
inertia for the state */ 7, ) is possible by applying the conventional Lagrange 
multiplier method to our self-consistent approach developed in section 5.4. 
However, we do not want to go into further details in the present work. With 
the approximation (5.63), the rotational states belonging to the excited ()+ 
state discussed in section 5.5 are of the usual form

with

|7M;y0A?o = 0) =
21+ 1 1/2

= o(fy)l’jCy„ >

7^ = 0+,2+,4+,6+. . . .

(5.64)

4*
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Here is defined by eq. (5.54), and the effect of the well-known 
symmetry restrictions are taken into account in limiting the allowed values 
of I.

6. Electromagnetic Transitions

In this section we discuss various electromagnetic transitions involving 
even parity stales (with 7’ = 0) in closed-shell nuclei. Electromagnetic 
transitions are a crucial test of the theory, more than energies, in particular 
they arc shown to be decisively influenced by the interplay between the 
residual interaction and the field-producing force. The essential differences 
between G. E. Brown’s and our theory are pointed out.

6.1 Energy-Weighted Sum Rule

As a preparation we wish to show that, for a general one-body boson
operator defined by

& = 2 C«
/ZV

(6.1)

the following sum rule holds within our approximation (4.5)

2K^olé|^>|2(Ez-Eo) = l<Øol[é[ff,£)]]|øi>.
A

(6.2)

Here the unperturbed ground stale [0q> is defined by eq. (3.11), |7z0/> 
and |VZ2> are defined by eqs. (4.12) and (4.13), respectively, and (Ez-7i0) 
= Pz are the eigenvalues of eq. (4.9).

With the aid of eqs. (4.11), (4, 9) and the completeness relation (4.10b) 
we can rewrite the left hand side of (6.2) as

SKS'oiôi'^W, e„) -
A A /zv

2 (/7 i I17) (ö I I<7) (^/zvozr -^/zvger) * 
[IV QO

(6-3)

On the other hand, we obtain directly

= 2 (^|S|v)(o)Dk)GV/iro<T - (6.4)
[IVQG

Comparison of eq. (6.3) and eq. (6.4) proves the sum rule (6.2). An analog
ous rule is known B?) for “lp-lli” excitations described by the conventional 
RPA.
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Now we observe that in our theory all operators for electromagnetic 
transitions can be written as one-body boson operators of the form (6.1) 
by inserting (3.15) into eq. (3.17). Consequently, the usual energy-weighted 
sum rule for electromagnetic transitions holds in our approximation. This 
is in contrast to the mixing model <5,> 6) in which there is no guarantee that 
the sum rule might not be violated.

6.2 Transitions Within Rotational Bands

For simplicity we coniine ourselves to the rotational band belonging to 
the excited 0+ state discussed in sect. 5.5; in the following we work 
with the wave functions (5.64). Furthermore it is convenient to refer the 
mass quadrupole moment operator (°)2M (defined by eq. (5.3) with L = 2) 
to the body-fixed coordinate axes which are chosen to be the axes of the 
intrinsic quadrupole deformation of the excited 0+ state. This is achieved in 
the usual way by writing

Q.2M ~ ^^Mk\^î)Q2K’ (K ~ 0, ± 2). 
K

(6.5)

Now the E2 transition matrix element between an initial 
y0ZÇo = 0) and a final state y^Ky*  = 0) is given by

state

= i e(^rV/4= Q2M I = 0). |

Here we are considering only 7’ = 0 states. With the aid of eqs. (6.5), 
(5.64) and (5.62), we then obtain the result

(IfMf-,y0Kya = O|^(E2,M)|7^;yoÆ?o = 0)
1/2

B(E2; If) = ie2<7,200|7z0>2^2-

(6-7)

(6-8)

Eq. (6.8) shows the well-known dependence of the E2 transition probabilities 
within a band on the intrinsic deformation, ß, defined by eq. (5.62) charac
teristic of this specific band.
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6.3 E2 Transitions Connecting the Rotational Band with the Ground State

Here we consider the £2 transition from the 2 + state in the rotational 
band belonging to the excited 0+ state discussed in sect. 5.5 to the ground 
state. In this case, the 7Ï2 transition matrix element connecting the 2 + state 
\It = 2,Mt; = 0) and the ground state, IOjJ, is given by

. Je<22.VjJ/|OO><'//o|Q2,Æ_l)l'?'),.> I
and so we have

B(E2,2+ -> Of) - (610)

where I > and are given in eq. (5.54) or eq. (5.40).
In evaluating C^o) Qï,k = ol ^y^ we ^irs^ observe that (V'J = ol

= 0. This result is obtained with the use of the definition (5.8) of = o 
and by inserting eq. (5.52) into eq. (5.58). Then, using eq. (4.11) with 
respect to Xy , we have

= o I l^y/ = <^ol Q^k = ol ^y^
= 2(^1020^) (6-n)

/LIV

where ^(//r) and T]yo(/Ltv) are delined through eq. (5.40) and are written 
with the help of eq. (5.50) as

Z

With eq. (6.11), eq. (6.10) becomes

B(E2;2X+ 0j^) = 21oe2[2(AtIQ2ol1/){^o(^) - (6.13)
[AV

It is interesting to observe that formally eq. (6.13) has precisely the 
same structure as the corresponding equation obtained by the conventional 
RPA for “lp-lh” problems. For the E2 transition from the “dressed 2p-2h’’ 
excited 2+ state to the ground state, we will therefore expect the well-known 
enhancement associated with the structure of eq. (6.13). In particular we 
will have the usual relation: the stronger lhe field-producing force, the larger 
the 77 (E2) value. Such an enhancement, caused by the collective ground
state correlations due to the field-producing force, is a direct and natural 
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consequence of the present theory. The enhancement is needed to explain 
the large measured transition rate in O16 namely B(E2; 2^ -> O^) = 5e2fm4. 
An interesting feature of the electromagnetic transitions is the importance of 
the interplay between the residual interaction and the field-producing force. 
It becomes most obvious if we neglect altogether the ground-state correla
tions due to the residual interaction. Then, from the definition (5.4) we have

(^1 C?20i v)tD = S/l = 1’ SV = ~

and thus there are no E2 transitions from the 2+ state to the ground stale. 
But the residual interaction need not be strong either. Even a weak residual 
interaction may provide a sufficient basis for strong collective ground-state 
correlations (due to the field-producing force).

6.4 EO Transitions from Excited 0+ States to the Ground State

Throughout this subsection we are again considering the excited 0 + 
state, lOg") = \I = 0, M = 0; yoKyo = 0), discussed in sect. 5.5. The effec
tive operator for the decay of the state |0^) to the ground state 10^) by elec
tron-positron pair emission or internal conversion is given by

Po = eS<a|1 r2\ß>'cacß'- (6-14)
aß 2

With the help of the rule (3.14) and eq. (3.13), we can expand the operator 
in terms of pair scattering modes as

A = 2(/zlPolr): C^Cr:> (6.15)
where

(/z|P0|v) = 4e2<al—5~r2l^>s/z’p/<(ay)(1 ~ ()a - °c)svlf/v(ß7)- (6.16) 
aßy 2

Thus, in the same way as in the preceding subsection, we obtain the matrix 
element for pair emission as

(O^iPol°2+) = S(^lpolv){^.(^v) - (6-17)
/J,V

As in the preceding subsection, we may expect from the structure of 
eq. (6.17) an enhancement of the pair emission rate, possibly sufficient to 
account for the large experimental value in O16, namely (0^ IPqIO^) 0.4c/?q 
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(7?0 = nuclear radius). Furthermore, the arguments given in the preceding 
subsection for the importance of the interplay between residual interactions 
and the field-producing force are equally applicable here. The influence of 
the intrinsic deformation of the state |0^) on the pair emission rate becomes 
evident if we insert eq. (6.12) into eq. (6.17) and then trace the role of the 
functions U., and .

6.5 Hindrance of Double Gamma Decay of the First Excited 0+ State

In discussions of the properties of the first excited 0 + states in closed- 
shell nuclei, an instructive piece of data has often been neglected, namely 
the absence of observed yy-decays of these states. Usually the first excited 
0+ state lüg’) = decays to the ground state lO^) = by the EO 
transition discussed in the preceding subsection. However, the two-photon 
emission 68, 19) may also contribute to the decay. In this case, the total energy 
E? - Eo = = li(a> + co') is split up between two photons with energies
ha> and hw'. The most probable decay mode will consist in the emission 
of two dipole quanta. Then the total transition probability is given by<18> 19)

where

x
2

9J1(E1,O) = e2<al—~T"ryio(09’)^>:c^c/3:
aß

(6.18)

is the electric dipole operator. In the sum over the intermediate states |n) 
in eq. (6.18), the most important contribution will come from the giant 
dipole resonance, so that En — E^ » hco or hco'. This fact has been used to 
drop the terms hco and hco' in the energy denominator of eq. (6.18).

In trying to evaluate ecp (6.18) it is necessary to relate Wyy to other 
independent observable quantities in an unambiguous way. This is best 
done by introducing <19> a parameter tj through the definition

n

(6.19)
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The sum of the right-hand side is closely related to the (-2)-moment of the 
photonuclear absorption cross section <20>

(6.20)

which is known to be a smooth function of the mass number A for most 
nuclei. The parameter t] is a well-defined quantity and can be obtained from 
the experimental upper limits for Wyy/W(E0), from W(E0), and eqs. (6.18) 
to (6.20). The result of such an evaluation is presented in table I.

Table I. Hindrance of Double Gamma Decays

E
[MeV]

Wexp(£0)a)
[sec 4]

6 yyl HZexp 
(E0)

cr_ 2usedd) 
[/zft/MeV]

Wy/calc)
[sec- q

T]2

O16 6.05 1.4-1010 < i.i-io-4b) 7 A5'3 5.8-109 r/2 < 2.6-10-4
Ca40 3.35 2.9-10® < 4 -10_4C) (2.6 ± 0.5)-103 1.2-108 < 0.95-10-4
Ge72 0.69 3.4-10« 3.5 A5'3 5.6-104 r/2
Zr90 1.75 1.1-10’ < 1.8-10-4C) 3.5 A5'3 8.1-107 if < 0.25-IO-4

a) see the first of refs. 19.
b) see ref. 23.
c) see ref. 24 and compare the still lower limit given in ref. 25.
d) for Ca40, see ref. 26, for the other nuclei ref. 20.

Replacing in eq. (6.19) the main resonance region by a single represen
tative state |no), the “dipole state”, we may take*  t] as a measure for the 
ratio of matrix elements

<Oa+|TO(gl,O)|no>
<01+|®(El,0)|n()> '

(6.21)

If the two states 10^) and |0^“) were of a very similar structure then tj should 
be of the order one. Table 1 shows, however, that in all measured cases z? 
must be a very small quantity, indicating, quite systematically, that the first 
excited 0+ states seem to have no appreciable coupling to the giant dipole 
resonance.

* This replacement is possible unless there are considerable cancellations in the left hand 
sum of eq. (6.19) due to fluctuations in the sign of (n| 9Jt(El,0) 10+)/(n| Wî(El,0) | 0+). It is known, 
however, that the giant dipole resonance behaves like a single coherent state, the dipole state, 
so that strong cancellations are not to be expected.
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(6.23)

(6.24)

(6.26)
2

of the first excited O+ state in 016 with other 1 
described as “lp-lh” excitations seems also to

In the same approximation in which eq. (6.26) has been obtained, the 
numerator in eq. (6.21) becomes

B(E1 ; 1"(7.12)

B(E1 ; 1—(13.1)

Here, it should be noted that the first transition occurs only through isospin 
impurities. The limits are not as low as those for tj; on the other hand, the 
interpretation is unambiguous.

As has been realized long ago hog it will be very
the experimental limits (6.22) in a model <5> in which both |0^") and |0^ 
are described as a mixture of spherical and deformed states with roughly 
equal amplitudes. It may be even harder to account for the smallness of 
|?7l without simultaneously destroying the strong E0 and E2 transitions 
between the rotational band and the ground state of O16. On the other hand, 
we wish to show that the present theory does not encounter such difficulties.

Suppose that the states |n) arc well described as “lp-lh” states in the 
conventional RPA:

Similarly the coupling 
states which are normally 
be small(21> 22>

difficult to explain 
)

(o1+|rø(Ei,())|77O) = - sn0(aß)}-
aß

with the creation operators

+Sn(*ß) bß«a)- 
aß

Then, with the aid of the inverse relation to eq. (6.24), 

aibß = 2(Rn(*ß) Dn - sn(“ß)Dn)>
n

lhe denominator of eq. (6.21) is written in the usual form

(O2+|9)i(El,O)|no) = e^^a\^-^rYiO(0(p)\ß){Rn(xß) - Sn(<xß)} 
n aß 2

- 2(01+læ(E1.0)|n)(Oa+|£,BJ01+),
n

(6.27)
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where the operator £>nWo is defined by

ÖWKo = ~ 2 2 Mxlßl)lin^2ß2^aßa,bß1bß\ 
aißia2ß2

x 2 (6<3 )
S/z — 1

»; = -1

According to the present theory, the hindrance of the double gamma decay 
comes from the extreme smallness of the overlap in eq. (6.31) between the 
“lp-lh” correlation functions 7?Wo (oq/^) and 7?Wo («2^2) f°r the giant re
sonance and the “2p-2h” correlation function, 2^20(/zr)^u(aia2)^v(^i^2)’ 

/XV
for the first excited 0+ state. One reason for this smallness is simply the angular 
momentum recoupling which is sufficient to explain the limits (6.22). In 
the case of the dipole resonance, we have an additional effect: The largest 
components of 77 (aß) for the giant resonance state come from the highest

- 2 2 Rn(xlßl)Sn0(X2ß2)ftalaabßbßt- 
aßh a2ß,

(6.28)

To get a rough estimate for the order of \r/\, we assume that we can replace 
the sum over intermediate states by the “dipole state” |n0). From eq. (6.26) 
and eq. (6.27) we get for the order of \rj\ the result

<W) - (02+id„.„.|01+)i. (6.29)

Expanding the operator £Wu?io in terms of the pair scattering modes with the 
aid of eqs. (3.15) and (4.11), we have

O(|//|) ~ KVz?o|r„oWû|ï/0>|

= 14 2 2 (1 - - Öa2)G - ebl - °bt)Rn0(<xlßl)RnX<X2ß2)
«i«2 ßißi

/IV
Sn = 1, sv = -1

+ 42 2 (1 - 0«! “ ~ ^b2)*̂no( al^l)^n0(a2^2)
a2a2 ßißz

2 [^0(/^)VZ/z(^2)^(ala2) - W/Zr)VZZx(ala2)¥/v(^2)]|
fiv

S/z = 1, S„ = - 1

in which the leading terms are

14 2 2 (1 ~ ~ ^a2)(l “ bbl bbßRna(xlßl)Rn0(x2ß2)
a^zßiß, . 
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particle levels a and the lowest hole levels ß, while the largest components of 
2^2i)(/tr)’^M(a1a2)¥/l,(/?1^2) for the first excited 0+ state come from the lowest 
fJIV

particle levels a and the highest hole level ß. A rough estimate with simplify
ing assumptions seems to be in agreement with the experimental limits on |r/|.

7. Conclusions

In the last few years, the RPA describing “lp-lh” excitations has found 
a wide field of application, particularly in explaining collective phenomena 
in nuclei. Essentially, however, this approach is exhausted and its limita
tions are known. In the present work we have attempted to construct a 
systematic theory for “2p-2h” excitations. Clearly, this problem is next in 
simplicity after the “lp-lh” excitations, and yet it yields a wealth of new 
collective phenomena. In constructing the present theory some approxima
tions are necessary, of course. One of the important approximations is the 
two-step method and the other is the neglect of interaction matrix elements 
involving an odd number of fermions or fermion pairs (i.e., HY and X) Y, 
respectively). This shortcoming may partly be compensated by a proper 
choice of the effective interaction. Similarly as in the conventional RPA we 
also were forced to renounce the Pauli principle to some extent. As far as 
the Pauli principle is concerned, our NTD method is constructed in such a 
way that, in the limiting case of a pure 2p-2h system (without ground-state 
correlations), all our results are exact.

The starting point of our work was the problem of O16 and Ca40. It was 
felt that existing theories and models were unsatisfactory and not entirely 
adequate to cope with the situation. The reason why the collective ground
state correlations introduced in our NTD method should become particu
larly important for closed shell nuclei is obvious: These ground-state correla
tions carry the decisive interplay between field-producing forces and the resi
dual interaction. Even a weak residual interaction may provide a sufficient basis 
for strong collective ground-state correlations (due to the field-producing force).

In a pictorial language, the residual interactions are indispensable for 
softening the core, so that the strong field-producing forces are able to 
deform it. All these elfects are included in the “collective predisposition” of 
the spherical ground slate for deformed excited states.

Although in the present work our NTD method was primarily designed 
for closed-shell nuclei, a wide field of applications suggests itself. The next 
objects of interest will be nuclei which diller by two nucleons from closed- 
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shell nuclei, like O18 and Ca42. Here, certain excited states will be described 
by a “2p-2h phonon”, , coupled to a correlated pair A^. The presently neg
lected interaction ÖF will become important for the coupling. Similarly it 
will be possible to describe certain excited states in nuclei like O17 and F17 
by coupling a fermion to a “2p-2h phonon”, where HF might be expected 
to play an important role. Since the excitation from a spherical ground 
state to a deformed excited state is definitely due to an anharmonic effect, 
we might also expect our NTD method to be useful in describing anharmonic 
effects in the second excited states (J71 = 0+, 2+, 4+) in spherical even nuclei.

Before entering on such problems, we duly turn back our attention to 
the starting point O16 and Ca40. ft is true that we are not yet able to present 
any numbers: a quantitative discussion will be the subject of a later publica
tion. But, fortunately, the measured properties of O16 and Ca40 are so 
striking that a natural simultaneous explanation of the various phenomena 
has a certain conclusive value even though it is only qualitative.

We believe that we easily can account for the strong collective lowering 
(with respect to the unperturbed positions) of first excited even parity states. 
It is due mainly to the deformation, but “triggered” by the residual inter
action. Since the excited stale with a definite intrinsic deformation contains 
the ground-state correlations properly, there is no difficulty in simultaneously 
understanding both the rotational band structure and the E2 transition to 
the ground state. In other words, although the ground state is spherical and 
the excited states are deformed, we may expect strong electromagnetic transi
tions between the rotational band and the ground state. This is borne out 
both by the validity of the energy weighted sum rule and the expression given 
explicitly for the transition probabilities. Formally, the expression has a 
very close resemblance to the corresponding expression for the strong collec
tive transition probabilities described by the conventional RPA. Finally, the 
collective nature of the first excited 0+ state in O16 and Ca40 makes it easy 
to understand the strong hindrance of the double gamma decays. Thus, we 
feel that, in principle, all the striking and not easily unifiable features of 
O16 and Ca40 can be well accommodated in our theory without depending 
on a very critical choice of some parameters.

It is sometimes argued that any theory which tries to describe the lowest 
excited even parity states in O16 as consisting mainly of 2p-2h excitations 
is doomed to fail from the outset. The arguments are usually based on 
the fact that Hartree-Fock calculations (3) for O16, with certain restrictions 
and confined to a space of pure 2p-2h or alternatively pure 4p-4h configura
tions, might give a lower energy for 4p-4h excitations*.  From our point of 
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view, such arguments are not necessarily conclusive. In spite of the result 
of reference 3, we still tend towards the orthodox belief that the shell-model 
configuration with the lowest zero-order energy should be of some impor
tance. Furthermore, we feel that taking into account the collective ground
state correlations might change the ordering of the “2p-2h” and “4p-4h” 
stales. The reason is that only the 2p-2h states couple directly to the shell
model ground state (provided that only conventional two-body interactions 
are considered). Thus, it seems to us that the question of whether the “2p- 
2h” or the “4p-4h” configurations win the competition of being mainly 
responsible for the first excited 0+ state in O16 cannot be decided before 
quantitative calculations in the framework of the present theory are per
formed.

Whatever the outcome may be, certainly there will be states to which 
our approach is applicable and there may be use for it in other problems.
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